ICCES2022
  • Home
  • About
    • Committee
    • About ICCES
    • History
    • Themes
    • Sponsors
  • Program
    • Online Program
    • Speakers
    • Symposia
  • Awards
    • The Satya N. Atluri Award
    • Life-time Achievement Award
    • The Wei-zang Chien Award
    • The ICCES Eric Reissner Award
    • T.H.H. Pian Award
    • The Kobayashi Award
    • ICCES Outstanding Young Researcher Award
    • ICCES Best Student Paper Award
  • Submission
  • Registration
  • Contact
Symposia shut down Back to previous  
Submission
Click here to Submit
Registration
Online Registration
Important Dates
Symposium Proposal Submission: 
July 1, 2021

Abstract Submission: 
October 15, 2021

Full Paper Submission: 
November 1, 2021 

Notification of Acceptance:
November 15, 2021

Early Bird Registration: 
November 15, 2021

Symposia
+ 查看更多
Submit your proposal

View Guidelines for submitting a symposium proposal at ICCES2022

Symposium proposals should be submitted in English via the Conference website. You could also send the proposal (including the suggested title, a brief description, and the organizers’ information) to ICCES Secretariat (icces@techscience.com)

The chair will be in charge of corresponding, call for papers, instructing speakers, and during the session will act as host and timekeeper. The chair is also responsible for confirmation of the speakers to present at the ICCES2022. The chair is also responsible for confirmation of the speakers to present at the ICCES 2022, including payment of registration fees.


The structure of the symposium is not fixed. Generally, for contributed papers, each will be of a 15-minute presentation. For student papers, these will be of 10-minute presentation. Enough time for discussion should be included.

The deadline for symposium proposal submission is July 1 2021. Proposals will be reviewed and notification for acceptance will be sent in around two weeks after the form has been submitted.

If you have any questions or need any assistance, please contact the ICCES Secretariat.
S1: Computational Methods in Space Flight Mechanics

View Description

Computational mechanics has penetrated almost any discipline of engineering and science. In an era of computer and automation, computational methods not only serve as simulating auxiliary, but also shape the development of many disciplines. This trend has been significant in the space flight mechanics since the Apollo program, although the computation capability by then is trivial compared to the off-the-shelf CPUs nowadays. Problems such as space trajectory design, orbital determination are obviously related with computational mechanics. However, it is seldom bluntly mentioned that the guidance and control of spacecrafts are also tied with computation, where inherently they are all trying to seek some forms of solutions in dynamical systems. 
The emphasis of computation in the aforementioned problems or technologies is to point out the following traits in contrast to traditional recognition :
(1) Numerical solutions and algorithms compatible with on-board computation are replacing the closed form guidance and control methods.
(2) The state-of-art algorithms, techniques, and philosophy in computational mechanics can inspire novel thoughts and insights in computational aspects of space flight mechanics.
(3) Rather than simply solving the problems numerically via brute force. The computational efficiency, reliability, accuracy, and robustness of the solution process are crucial to practical mission.

This symposium is to invite researchers to share their efforts in formulating, modeling, and analyzing the problems in space flight mechanics via computational methods.

Topics to be covered involve novel computational methods in the following aspects:
1.Attitude dynamics, determination and control
2.Dynamics and control of large space structures and tethers
3.Flight dynamics operations and spacecraft autonomy
4.Orbit determination and space-surveillance tracking
5.Orbital dynamics, perturbations, and stability
6.Rendezvous, relative motion, proximity missions, and formation flying
7.Spacecraft guidance, navigation and control

Organizers:
Tarek A. Elgohary
University of Central Florida, USA, elgohary@ucf.edu
Xuechuan Wang
Northwestern Polytechnical University, China, xcwang@nwpu.edu.cn
Honghua Dai 
Northwestern Polytechnical University, China, hhdai@nwpu.edu.cn
Yue Guan
Texas Tech University, USA, yuguan@ttu.edu

S2: Data-driven, physics-based and hybrid modeling & simulation methods for complex engineering systems

View Description

Modeling and simulating the behavior of complex engineering systems is challenging due to the multi-physical, multi-level/scale, multi-uncertainty characteristics. Although being the major protagonist in the third industrial revolution, traditional physics-based computational modeling methods (structural finite elements, computational fluid dynamics, etc.) have inherent limitations. Such limitations become almost intractable when physics are not unavailable or unreliable, when applications require real-time simulation feedbacks, and when uncertainties must be continuously tracked and controlled. Meanwhile, the era of “big data” is experiencing the booming of data-driven modeling methods, for which a must-be-paid price is the costly-process of data-collection and off-line/on-line machine learning. Recently, various “physic-informed”, “physics guided”, “physics constrained” data-driven methods, and hybrid physics (model) -based / data-driven methods have been proposed and successfully implemented, in the exploration of combined advantages of both the physics-based and data-driven modeling methods.         
          
The proposed symposium aims at bringing together researchers to highlight the recent developments of data-driven, physics-based and hybrid modeling & simulation methods, with their applications for the predictive design, maintenance, and control of complex engineering systems, to exchange the latest ideas/progresses, and to promote further collaborations in the community. 

Interested topics include:
  1. Reduced-order physic-based modeling methods
  2. Physics-informed/guided/constrained machine learning
  3. Hybrid physic-based and data-driven methods
  4. Digital Twin of complex engineering systems
  5. Applications in the predictive design, maintenance and control

Organizer:
Prof. Leiting Dong
Beihang University (BUAA), China, ltdong@buaa.edu.cn

S3: Symposium in honor of Professor Chein-Shan Liu for his receiving ICCES Lifetime Achievement Award: Novel numerical methods for solving linear and nonlinear algebraic equations

View Description

The numerical solution of linear or nonlinear algebraic equations is one of the main aspects of computational mathematics. In many practical nonlinear engineering problems, methods such as the finite element method, boundary element method, finite volume method, the MLPG method (which leads to many different meshless methods), etc., eventually lead to a system of nonlinear algebraic equations (NAEs). Many numerical methods used in computational mechanics lead to the solution of a system of linear algebraic equations for a linear problem, and of a system of NAEs for a nonlinear problem. Over the past three decades a variety of important methods have been developed towards the numerical solutions of NAEs. Among them, some seminar contributions are credit to Professor Chein-Shan Liu. Specifically, he proposed a series of fictitious time integration methods and scalar homotopy methods, which do not need to invert the Jacobian matrix, for solving NAEs, and some Lie-group based methods for solving large scale LAEs. In the affine Krylov subspace, Liu developed a series of double optimal algorithms to solve LAEs and NAEs with high precision and high performance. This symposium is to invite researchers to share their efforts in the realm of numerical methods of linear or nonlinear algebraic equations, numerical methods for discretizing ordinary differential equations and partial differential equations into NAEs, et al.

Topics to be covered involve novel computational methods in the following aspects:
1. Numerical methods for large scale linear algebraic equations
2. Numerical methods for highly nonlinear algebraic equations
3. Novel time integration method for nonlinear dynamical systems
4. Lie-group shooting methods
5. Novel methods for ill-conditioned systems
6. Applications of novel NAE and ODE solvers
7. Novel meshless methods


Keywords: 
Nonlinear equations; Fictitious time integration method; Scalar homotopy method; Meshless method; Lie-group method

Organizers:
Prof. Jiang-Ren Chang,
Department of Systems Engineering and Naval Architecture, National Taiwan Ocean University, Taiwan, cjr@mail.ntou.edu.tw
Prof. Honghua Dai
 School of Astronautics, Northwestern Polytechnical University, Xi'an, P.R. China, hhdai@nwpu.edu.cn
Dr. Chung-Lun Kuo
Center of Excellence for the Oceans, National Taiwan Ocean University, Taiwan, eji1215@gmail.com

S4: Computational and experimental methods in biomedical and biomechanics engineering

View Description

This symposium aims to provide a means of communicating the advances being made in the area of computational biomechanics and biomedical engineering with the emphasis being placed on biomechanics. Authors and presenters are invited to participate in this symposium to present the state-of-the-art computational aspects of biomechanics and simulation in both engineering and clinical scenarios.

Interested topics include:
  1. Additive manufacturing
  2. Mechanics of biological tissue, organ systems and biomaterials
  3. Material identification and inverse problems
  4. Electromagnetic Imaging and inverse problems
  5. Human body movement, motion analysis and impact
  6. Cell mechanics, mechanotransduction, and computational mechanobiology
  7. Computer-assisted surgery and simulation
  8. Biofluids and hemodynamics
  9. Modeling, design and assessment of medical devices and implants
  10. Imaging and its application in biomechanics and biomedical engineering 
  11. Joint and ligament mechanics
  12. Multiscale and Multiphysics modeling
  13. Injury and Damage Biomechanics

Keywords:
Biomedical Imaging; Biomedical Devices; Biomechanical Systems, Electromagnetic Imaging and inverse problems

Organizer:
Prof. Lulu Wang
Biomedical Device Innovation Center,Shenzhen Technology University, China
Email: wanglulu@sztu.edu.cn

Lulu Wang is currently a Distinguished Professor of Biomedical Engineering in the Biomedical Device Innovation Center at Shenzhen Technology University in China. She received the M.E. (First class Hons.) and Ph.D. degrees from the Auckland University of Technology, New Zealand, in 2009 and 2013, respectively. From 2013 to 2015, she was a Research Fellow with the Institute of Biomedical Technologies, Auckland University of Technology, New Zealand. In June 2015, Dr. Wang became an Associate Professor of biomedical engineering with the Hefei University of Technology. In June 2019, she became a Distinguished Professor of Biomedical Engineering at Shenzhen Technology University. Her research interests include medical devices, electromagnetic sensing and imaging, and computational mechanics. Over the past 5 years, Dr. Wang has authored more than 70 peer-reviewed publications, 2 ASME books, 7 book chapters, and 12 issued patents. Dr. Wang is a member of ASME, IEEE, MRSNZ, AAAS, PSNZ, and IPENZ. She is an active reviewer of numerous journals, books and conferences. Dr. Wang has edited four books and two special issues of international journals. She has received multiple National and International Awards from various professional societies and organizations.

S5: A Special Symposium on Computational/Experimental Aeroelasticity and Aerothermoelasticity

View Description

Manuscripts are solicited on topics related to Computational/Experimental Aeroelasticity and Aerothermoelasticity, including but not limited to:
  1. Theories, Analytical and Experimental Methods for Aeroelasticity/Aerothermoelasticity
  2. Studies Focusing on Nonlinear Panel Flutter and Typical Aircrafts
  3. Reduced-Order Modelling for High-Dimensional Systems involving Aeroelasticity
  4. Computational Fluid/Structural/Thermal Dynamics (CFD/ CSD/ CTD) Methods Applied to Aeroelasticity/Aerothermoelasticity
  5. Coupling Strategies for Fluid-Structure-Thermal Interaction in Aerothermoelasticity 
  6. Applications of Aeroelasticity in the Design of Aircrafts


Organizers:
D
an Xie
Northwestern Polytechnical University, China, dxie@nwpu.edu.cn
Honghua Dai
Northwestern Polytechnical University, China, hhdai@nwpu.edu.cn

S6: Symposium in honor of Professor Padraic O'Donoghue to receive the THH Pian Medal, and Dr. Bud Brust to receive the Eric Reissner Medal

View Description

This symposium will focus on recent advances in computational and experimental mechanics of materials and structures, with a focus on non-linear mechanics of materials, including plasticity, creep, fracture, wear, fatigue and tribology. This includes:
1) multi-scale methods for analysis and design of materials and structures in civil and mechanical engineering;
2) process-structure-property-performance relationships for structural design and analysis;
3) development of new manufacturing processes (e.g. additive, novel welding processes) and improved understanding of existing methods;
4) new applications of societal importance, such as renewable energy, new transport technologies etc.;
5) new design challenges, such as lightweight, low-cost materials, multi-functional materials;
6) machine learning or data driving for designing meta-material and structure, as well as engineering application.



Keywords
Computational mechanics; Experimental mechanics; Non-linear mechanics of materials; Plasticity; Fracture and fatigue; Materials and structures in civil and mechanical engineering; Additive and novel welding manufacturing processes; Renewable energy technology; New transport technology; Lightweight material; Meta-material; Data driving design; Digital twin

Organizer
Prof. Zhuo Zhuang
Tsinghua University, China, zhuangz@tsinghua.edu.cn 
Prof. Hiroshi Okada
Tokyo Univ. of Science, Japan, hiroshi.okada@rs.tus.ac.jp 
Prof. Leen, Sean
National University Ireland, Galway, Ireland, sean.leen@nuigalway.ie 
Prof. Dongfeng Li
Harbin Institute of Technology (Shenzhen), China, lidongfeng@hit.edu.cn 
Prof. Hiroshi Kawai
Toyo University, Japan, kawai063@toyo.jp
S7: Symposium on Advances in Virtual Testing, Simulations and Predictive Methods in Creep, Fatigue, and Environmental Cracking

S8:  Advances in Modelling, Simulation and Control of Cyber-Physical Systems

View Description

Cyber-physical Systems (CPS) are complex dynamical systems that combine both physical (plant, process, network) and cyber (software, decision-making algorithm, computation) components, whose operational evolutions are monitored, integrated, coordinated, and controlled by computing and control units.
Cyber-physical systems exist in a wide variety of technological applications, such as intervention (e.g., collision avoidance); precision (e.g., robotic surgery and nano-level manufacturing); operation in dangerous or inaccessible environments (e.g., search and rescue, firefighting, and deep-sea exploration); coordination (e.g., air traffic control, warfighting); efficiency (e.g., zero-net energy buildings); and augmentation of human capabilities (e.g. in healthcare monitoring and delivery). Since the correct functioning of such systems is often safety-critical, their formal modeling and analysis (including reliability analysis) are of utmost importance. One of the most challenging problems in the domain of cyber-physical systems is the heterogeneity of their components (such as sensors, actuators, signal processing units), which makes modeling and automated model processing difficult. To date, no unifying theory nor systematic design methods, techniques, and tools exist for such systems. Individual (mechanical, electrical, network or software) engineering disciplines only offer partial solutions for the design of cyber-physical systems. 

This Symposium aims to collect new contributions in the area of modeling, simulation, and control as well as reliability analysis of cyber-physical systems, ranging from the introduction of a new appropriate set of concepts, techniques to their practical implementation and applications with a particular emphasis on applied aspects.

The topics of research areas covered for this Symposium are:
  • Heterogeneous design of cyber-physical systems;
  • Multi-Paradigm Modelling of cyber-physical systems;
  • Reliability analysis of cyber-physical systems;
  • Co-simulation of cyber-physical systems;
  • Embedded design for cyber-physical systems;
  • Control of cyber-physical systems;
  • Formal verification of cyber-physical systems.


Keywords
Cyber-physical systems, modeling and simulation, control, reliability analysis, formal verification, embedded design.

Organizer
Ayman Aljarbouh
Assistant Professor, University of Central Asia, ayman.aljarbouh@ucentralasia.org


S9:  Railway Infrastructures

View Description

In the 21st century, with the globalization playing an increasingly important and influential role in societies and markets, the development of new transport infrastructures that allow an efficient movement of passengers and goods is of the utmost importance. Railway transport has been playing a key role in this context, contributing to the sustainable development of countries, both in terms of economic growth and social development. This type of transport has several advantages over others, mostly related with the lower transportation costs, the lower environmental impact and safety. Additionally, the reduction in travel time due to the increase of speed, along with an improvement in passenger comfort, also contributes to the greater competitiveness of rail transport.


In order to achieve better performance in terms of travelling time, the railway infrastructure has grown significantly in the last decades, especially with the construction of new bridges and tunnels. In terms of high‑speed railways, for example, the necessity to ensure smoother tracks with larger curve radius resulted in new railway lines with a high percentage of viaducts and tunnels. Countries such as China and Japan, for example, have high‑speed networks in which some of the lines have more than 75% of viaducts. Therefore, to face these challenges, the research related to railway infrastructures is becoming increasingly important among the railway engineering community.


Within the framework outlined above, this symposium aims to bring together the latest achievements, research and studies regarding the planning, design, construction, monitoring, maintenance and management of the railway infrastructure. 


Theoretical, experimental and computational investigations or a combination of them, are welcome to this session. Expected papers should cover various types of railway infrastructure such as bridges, viaducts, tunnels, track and transition zones. Other relevant topics for discussion will be: vehicle‑structure interaction, track‑bridge interaction, soil‑structure interaction, train-induced ground vibrations, geotechnical aspects (earthworks, embankments and stabilisation), reliability and runnability of railway infrastructure in strong winds and/or earthquake-prone areas.


Organizer:
Prof. Diogo Ribeiro
ISEP, Instituto Superior de Engenharia do Porto, drr@isep.ipp.pt 
Dr. Pedro Aires Montenegro
FEUP, Universidade do Porto, paires@fe.up.pt 
Dr. Andréas Andersson
KTH, Royal Institute of Technology in Stockholm, adde@kth.se 
Prof. Maria D. Martinez-Rodrigo
UJI, Universitat Jaume I, Castellón, mrodrigo@uji.es

S10: Traumatic injury subjected to Impact, Blast and Ballistics

View Description

This symposium is intended to provide a forum to foster interdisciplinary interaction and collaboration among researchers, scientists and practitioners in traumatic injury resulting from high rate impact, blast, and ballistics. Papers are solicited on design, analysis, experiments, modeling and applications in this topic area. 

Topic
Possible areas include, but are not limited to:
High Rate Injury Biomechanics
Injury Treatment or Assessment Methods from High Rate Trauma Events
Personal Protective Equipment for Injury Mitigation
Injury Mechanics due to Multiple Threats
Surrogate Devices for Biomechanical Characterization
Kinematics and Motion from High Rate Trauma Events
Trauma due to Blast or Large Impacts to a Vehicle

Organizer:
Prof. Linxia Gu
Florida Tech, USA
Prof. James D. Lee
The George Washington University, USA

S11: Advanced Computational Methods for Gradient and Nonlocal theories for Multidisciplinary and Multiphysics Problems

View Description

One can observe a rapid miniaturization of electronic devices since nanotechnologies bring a new quality. The size-dependent phenomenon occurs in structures with physical dimensions that are of the same order of magnitude as the material length scale. It is observed experimentally and cannot be described by a classical contiuum theory. Generalized continuum theories of a nonlocal or gradient type have therefore been used to capture the  behavior of nano-sized structures.The ICCES minisymposium is devoted to computational methods to solve nano-sized structures described by advanced continuum models. Papers with a broad range of nanomaterials and nanotechnology in elasticity, heat conduction, electrical problems, and various coupled problems are invited.

Organizer:
Prof. Jan Sladek
Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia
Jan.Sladek@savba.sk
S12: Image Processing and Analysis

View Description

Over the last decades, numerous studies have been made seeking the development of efficient computational methods for image processing and analysis. These methods are usually based on geometrical, statistical or physical principles and aim to achieve improved visualizations and/or high-level analysis from the input images.
Image processing and analysis can be applied in various areas such as, for instance, industry, engineering, medicine, biology or sports and involve tasks like image restoring, image enhancement, image segmentation, image registration, shape recognition, shape description, motion tracking and analysis, simulation and animation.
The main aim of this Symposium is to bring together specialists from various fields related to Computational Vision, Mathematics, Informatics, Statistics, Medical Imaging, Industry, among others. The proposed Symposium will provide a forum for presentation and discussion of methods related to Image Processing and Image Analysis with the purpose of identify the major lines of development for the near future. Another important challenge for the proposed Symposium is to establish a connection between researchers and end-users from diverse fields.
 

Topics (not restricted to):

- Image Processing and Analysis;
- Image Restoring, Description, Compression, Segmentation and Description;
- Tracking, Matching, Reconstruction and Registration;
- Visual Inspection;
- 3D Vision;
- Medical Imaging;
- Simulation and Animation;
- Software Development for Image Processing and Analysis;
- Applications of Image Processing and Analysis.


Organizers:

João Manuel R. S. Tavares
Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
Email: tavares@fe.up.pt, url: www.fe.up.pt/~tavares

Renato M. Natal Jorge
Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
Email: rnatal@fe.up.pt

Yongjie (Jessica) Zhang
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, USA
Email: jessicaz@andrew.cmu.edu, url: http://www.andrew.cmu.edu/user/jessicaz


S13:Modeling the micromechanical deformation behavior of multi-phase materials

View Description

Advancement in material science has led to the development of complex materials for targeted applications and has pushed manufacturing boundaries. As the microstructural attributes of any material are responsible for the bulk deformation behavior and life after failure, it is important to engineer the microstructural attributes for obtaining desired material properties necessary for their safe functionality during service life. The formability limits of such materials play a huge role in dictating bulk deformation process limits during manufacturing and hence can affect the cost of production significantly. In the recent past, crystal plasticity-based numerical simulation models have paved the way for developing microstructurally informed detailed models to analyze the global and local deformation behavior of single and multi-phase materials. Such models can be used to study the effect of microstructural artifacts on the deformation and damage behavior of materials under multiaxial loading conditions. In conjunction with machine learning algorithms, these models can also be applied to optimize the microstructural attributes for the desired material application or a process route. 

Keywords: 
 • Crystal plasticity
• Bulk deformation 
• Material Forming 
• Polycrystalline metals 
• Numerical modeling 
• Multiscale modeling 
• ICME • Formability limit 
• Microstructure 
• Polycrystalline metals 
• Multi-phase metals 
• Process modeling
• Metal forming technology 
• Computational materials engineering 
• Plasticity • Thermomechanical processes 
• Materials processing 
• Mechanical behavior 
• Crystallography 
• Mechanical testing 
• Mechanical properties 
• Multi-phase metallic materials 
• TRIP/TWIP Steels 
• Metal matrix composites 
• Multi-physics modeling.

Organizer:

Faisal Qayyum
M.Sc.-Ing. Faisal Qayyum Doktorand TU Bergakademie Freiberg Institut für Metallformung Bernhard von 
Cotta-Str. 4 09599 Freiberg, Germany

faisal.qayyum@imf.tu-freiberg.de
S14:Computational, Experimental Engineering, and Science in Digital Twins

View Description

In various industrial fields, Digital Twins is used to optimizing the operation and maintenance of physical assets, systems, and manufacturing processes. The application of Digital Twins makes Internet of Things (IoT) connected objects expand into physical objects and their virtual twins, connecting the physical object space and virtual object space to become a virtual and real hybrid space, and the IoT has also developed into a new generation of Digital Twins networks, which greatly improves production and operation efficiency of various industries. The digital world can judge the results in advance through prediction, trial and error, etc., and automatically feedback to the physical world to adapt to the production or operation mode.
This symposium is to invite researchers to share their efforts in research on the theoretical methods of Digital Twins and their cross-applications with other fields, to exchange the latest ideas/progress, and to promote further collaborations in the community. 


Topics (not restricted to):
-Cyber-Physical System
-Virtual, Augmented, Mixed, and Extended Reality
-Intelligent Systems and Artificial Intelligence
-Digital Thread
-Product Lifecycle Management
-Data Fusion
-Decision Support
-Blockchain-based Digital Twins
-Trusted Digital Assets
-Digital Twins in Smart City/Smart Factory/ Smart Everything
-Power Electronic Converter Diagnosis
-Parallel Society and Social
-Dynamic Capture of Robot Information
-Digital Dual Edge Network


Organizer:
Zhihan Lv
Associate Professor, Qingdao University
lvzhihan@gmail.com
S15:Multiscale and Multiphysics Modeling of Heterogeneous Media

View Description

All materials are heterogeneous at small scales. With the development of material science and technology, composites have extensive applications in various engineering fields, especially regarding the emerging biomaterials or smart composites. To circumvent time-consuming and costly full-scale modeling and reduce experimental costs, the multiscale numerical techniques and homogenizations are continuously developed to accommodate composite structures of various types. In the meantime, the long-term service of engineering structures demands integrity of heterogeneous materials, which is difficult to be avoided since damages/cracks are usually initiated from micro-/nano-structures due to stress concentrations (especially around the interface of heterogeneous constituents) under mechanical loading and harsh environment. The phenomenon is more significant when multiphysics behavior is involved, such as hygro-thermo-mechanical and even magnetoelectric or chemical reactions. In this symposium, we encourage researchers from community of mechanics of materials to discuss the relevant topics. 

Organizer:

Guannan Wang
Professor, Zhejiang University 
guannanwang@zju.edu.cn
S16:Computational & Experimental Fluid/Electromagnetic Dynamics and Other Applications

View Description

From a simulation-based practical viewpoint, it is important to analyze effectively various problems in the wide fields including fluid dynamics or/and electromagnetic dynamics. Various robust strategies have been proposed in the frameworks of computational & experimental fluid/electromagnetic dynamics and other fields. Recently, the physics-based simulations on the parallel computing including GPU have been also become increasingly a key tool for solving various complicated problems. The topics of this symposium include: computational & experimental fluid/electromagnetic dynamics, mesh-based/meshless-based schemes, parallel computing, GPGPU, incompressible/compressible fluid flow, laminar/turbulent flow, multi-physics/multi-scale/multi-agent simulations, data-driven fluid simulations, nonlinear vibration analysis, and so forth.



Organizers:

Kazuhiko Kakuda, Dr., Professor
Department of Mathematical Information Engng., College of Industrial Technology, 
Nihon University, Japan. 
kakuda.kazuhiko@nihon-u.ac.jp 
Soichiro Ikuno, Dr., Professor
School of Computer Science, 
Tokyo University of Technology, Japan. 
ikuno@cs.teu.ac.jp 
Susumu Nakata, Dr., Professor
Department of Media Technology, 
College of Information Science and Engineering
Ritsumeikan University, Japan. 
snakata@is.ritsumei.ac.jp
Hiroshi Yamasaki, Dr., Professor
Department of Sustainable Engineering, 
College of Industrial Technology,
Nihon University, Japan. 
yamasaki.hiroshi@nihon-u.ac.jp
Masakazu Furuichi, Dr., Professor
Department of Mathematical Information Engng., College of Industrial Technology,
Nihon University, Japan. 
furuichi.masakazu@nihon-u.ac.jp
Kazuhito Misaji, Dr., Professor
Department of Mathematical Information Engng., College of Industrial Technology,
Nihon University, Japan. 
misaji.kazuhito@nihon-u.ac.jp 
Jun Toyotani, Dr., Professor
Department of Industrial Engineering and Management, College of Industrial Technology,
Nihon University, Japan. 
toyotani.jun@nihon-u.ac.jp 
Taku Itoh, Dr.
Department of Mathematical Information Engng., College of Industrial Technology, 
Nihon University, Japan. 
itoh.taku@nihon-u.ac.jp 
Ayumi Takahashi, Dr.
Department of Mathematical Information Engng., College of Industrial Technology, Nihon University,Japan. takahashi.ayumi@nihon-u.ac.jp
Shinichiro Miura, Dr., Professor
Department of Liberal Arts and Basic Sciences, 
College of Industrial Technology, Nihon University,Japan. miura.shinichirou@nihon-u.ac.jp 
S17: Experimental and Numerical Studies of Oil Recovery Processes from Shale Oil Reservoirs

View Description

FAs source rocks for most conventional oil reservoirs, oil shale deposits are found in all world oil provinces. There are more than 600 known oil shale deposits around the world. Although resources of oil shale occur in many countries, only 33 countries possess known deposits of possible economic value. Many deposits need more exploration to determine their potential as reserves. Oil shale reserves are economically recoverable under certain economic conditions and technological abilities. Oil shale deposits range from small presently economically unrecoverable to large potentially recoverable resources. The economic feasibility of oil shale extraction is highly dependent on the research and technology development. This symposium provides a platform for world wide researchers to exchange new ideas and technologies for efficiently developing shale oil resources. Topics cover all aspects of shale oil exploration and production with focus on experimental investigations and computer simulations.



Organizers:

Boyun Guo,
Professor, University of Louisiana at Lafayette
Gao Li,
Professor, Southwest Petroleum University, lgmichael@263.net
Jun Li,
Professor, China University of Petroleum-Beijing, lijun446@vip.163.com
Zhiyuan Wang,
Professor, China University of Petroleum-Huadong, wangzy1209@126.com
Fuping Feng,
Professor, Northeast Petroleum University, fengfuping2005@163.com
Zhongxi Zhu,
Professor, Youngtze University, zhuzhongxi@126.com

The information has been provided by proposers and updated in chronological order. Number of list continues to increase.

International Conference on Computational & Experimental Engineering and Sciences
2590 Windmill Ln #308, Henderson, NV 89074, USA Tel: +1 702 673 0457 Fax: +1 844 635 2598
Email: icces@techscience.com